Termiska isoleringsmaterial tillverkade av fast polyuretanskum (PUR/PIR)
Termiska isoleringsmaterial tillverkade av fast polyuretanskum (PUR/PIR)

Egenskaper – tillverkning

Fast polyuretanskum (PUR/PIR) är ett av de mest effektiva högpres­
teringande isoleringsmaterialen och möjliggör mycket effektiv energi­
besparing med minimal utrymmesanvändning.

Bättre isolering i byggnader är en betydande bidragande faktor för
implementeringen av Kyoto-protokollet och kommer även att
medföra ytterligare fördelar:

- energibesparinger, som resulterar i lägre elräkningar, både för
 individer och länder. Detta kommer att hjälpa till att förbättra
 Europas konkurrenskraft i sin helhet
- skydda av miljön: strängare isoleringslagar kan sänka de europeiska
 CO₂-utsläppen med 5 % (60 % av nuvarande europeiska Kyoto-mål)
- en positiv inverkan på skapande av arbete
- ett uppsving för den europeiska ekonomin

Denna rapport beskriver egenskaper för och tillverkning av fast poly­
uretanskum (PUR/PIR), ett av de mest effektiva isoleringsmaterialen.
Innehåll

Introduktion ... 4

1 Vad är fast polyuretanskum (PUR/PIR)? .. 5

2 Tekniska och fysiska egenskaper för fast polyuretanskum (PUR/PIR) .. 6
 2.1 Termisk ledningsförmåga .. 6
 2.1.1 Termisk ledningsförmåga och termiskt motstånd för isoleringsmaterial ... 6
 2.1.2 Termisk ledningsförmåga för fast polyuretanskum (PUR/PIR) ... 6
 2.1.2.1 Inverkan av cellgasen ... 7
 2.1.2.2 Inverkan av densitet .. 7
 2.1.2.3 Inverkan av temperatur ... 7
 2.1.2.4 Inverkan av vattenabsorption efter nedsänkning i vatten under 28 dagar ... 7
 2.1.3 Deklarerat värde för termisk ledningsförmåga ... 7
 2.1.4 Långsiktig termisk ledningsförmåga för isoleringsmaterial tillverkade av fast polyuretanskum (PUR/PIR) ... 7
 2.2 Densitet ... 8
 2.3 Tryckstyrka och eller tryckbelastning vid 10 % deformering ≥10 ... 8
 2.4 Kontinuerlig tryckbelastning tom (tryckkrypning) .. 8
 2.5 Perpendikulär dragspanning för ytor >ml, skjuthållfasthet och böjstyrka ≥b ... 9
 2.6 Upptärande vid närvaro av vatten och fukt .. 9
 2.6.1 Vattenabsorption efter nedsänkning i vatten under 28 dagar .. 9
 2.6.2 Fuktbeteende under effekt av diffusion och kondensation och i omväxlande frost-to-förhållanden .. 9
 2.6.3 Diffusionsmotståndsfaktor för vattenlanga μ ... 9
 2.6.4 Diffusionsekivalent tjocklek för lufttagret Sd .. 10
 2.7 Termisk expansion ... 10
 2.8 Specifik värmeförmåga och värmelagringsförmåga ... 10
 2.8.1 Specifik värmeförmåga Cp .. 10
 2.8.2 Värmelagringsförmåga C .. 10
 2.9 Temperaturstabilitet ... 11
 2.10 Kemisk och biologisk stabilitet .. 12
 2.11 Brandegenskaper för fast polyuretanskum (PUR/PIR) .. 12
 2.11.1 Reaktioner vid brand för isoleringsprodukter i enlighet med europeisk standard .. 12
 2.11.2 Motståndskraft mot brand för byggnadsdel som innehåller isolering av fast polyuretanskum (PUR/PIR) .. 12
 2.11.3 Klassificering för reaktion vid brand för produkter baserade på fast polyuretanskum (PUR/PIR) .. 12

3 Hållbar utveckling med fast polyuretanskum (PUR/PIR) .. 13
 3.1 Minskad energiförbrukning och minskade utsläpp .. 13
 3.2 Hygien och livsmedelskonservering ... 13
 3.3 Livscykelanalyser av fast polyuretanskum (PUR/PIR) och energibalans .. 14
 3.4 Fast polyuretanskum (PUR/PIR) - materialåtervinning och energiåtervinning .. 14

4 Tillverkning av termiska isoleringsmaterial tillverkade av fast polyuretanskum (PUR/PIR) 15
 4.1 Tillverkning av isoleringspaneler med flexibla ytor av fast polyuretanskum (PUR/PIR) 15
 4.2 Tillverkning av block av fast polyuretanskum (PUR/PIR) .. 16
 4.2.1 Kontinuerlig tillverkning av blockskum .. 16
 4.2.2 Icke-kontinuerlig tillverkning av blockskum ... 16
 4.3 Tillverkning av sandwichpaneler med stela ytor av fast polyuretanskum (PUR/PIR) 17
 4.3.1 Kontinuerlig tillverkning av metallbelagda sandwichpaneler ... 17
 4.3.2 Icke-kontinuerlig tillverkning av sandwichpaneler .. 17
 4.4 Sammanfattnings .. 17

5 Europeisk harmonisering av isoleringsmaterial - märkning av termiska isoleringsprodukter av fast polyuretanskum (PUR/PIR) ... 18
 5.1 Föreskrifter inom det europeiska direktivet för byggnadsprodukter .. 18
 5.2 CE-märkning .. 18

6 Referenser ... 19
Introduktion

Polyuretan – förbättrar vår livskvalitet

Skräddarsydd isolering

Effektiv termisk isolering som räcker hela livet

Termen fast polyuretanskum (PUR/PIR) står för en familj av isoleringsmaterial, som förutom polyuretan (PUR) även inkluderar fast polyisocyanuratskum (PIR).

De utmärkta termiska isoleringsegenskaperna för fast polyuretanskum (PUR/PIR) med slutna celler uppnås idag huvudsakligen med hjälp av bläsmedel som exempelvis pentan (kolväte) eller CO₂.

Utöver den låga termiska ledningsförmågan är fast polyuretanskum (PUR/PIR) stabilt och hållbart. Det kommer att fungera så länge byggnaden står och har en livstid som överstiger 50 år.

Termisk isolering med fast polyuretanskum (PUR/PIR) sparar resurser och energi och innebär inga betydande miljöfarliga utsläpp.

Fast polyuretanskum (PUR/PIR) är den rätta investeringen för framtiden eftersom:
- det erbjuder optimal, livslång isolering utan nackdelar, underhåll eller reparationer;
- det ökar egendomens värde och livskvaliteten;
- det leder till stora energibesparingar och minskade uppvärmningskostnader;
- det är kostnadseffektivt och enkelt att installera.

Image 1: Polyuretan - ett mångsidigt material

Isoleringspaneler

Tack vara deras utmärkta mekaniska styrka, är isoleringspaneler tillverkade av fast polyuretanskum (PUR/PIR) mycket motståndskraftiga; de kan kombineras med andra material och är enkla att installera på byggnadsplatsen.

Metallbelagda sandwichpaneler

Sandwichpaneler har en kärna av fast polyuretanskum (PUR/PIR) med profilera beklädnad, i de flesta fall metall, på både de övre och nedre ytorna. Sandwichpaneler är särskilt lämpliga för tak och väggar, för olika stödstrukturer i salar och industribyggnader, såväl som för kylo- och källförrådsenhet. Dessa vätsketspaneler är enkla att tillskriva och kan installeras i alla väderförhållanden. PUR/PIR-sandwichpaneler är i hög grad monteringsfärda, vilket ger dem strukturella och konstruktionsrelaterade designegenskaper som erbjuder en hög säkerhetsgrad, både i tillverkningsstadiet och i den avslutade byggnaden.

Block

Blocksskum av polyuretan (PUR/PIR) kan skäras till för att passa isoleringsbyggnadsutrustningen och industriell anläggningar.

1 Vad är fast polyuretanskum (PUR/PIR)?

2 Tekniska och fysiska egenskaper för fast polyuretanskum (PUR/PIR)

Egenskaperna för isoleringsmaterial är beroende av deras struktur, råmaterialet som används och tillverkningsprocessen. Vid valet av lämpligt termiskt isoleringsmaterial, spelar de önskade termiska egenskaperna den viktigaste rollen. För byggnadens funktion och säkerhet är en annan viktig faktor vid valet av isolering den mekaniska styrkan, motståndskraft mot åldrande, ljudisolerande egenskaper och motståndskraft mot fukt och brand.

2.1 Termisk ledningsförmåga

Termisk ledningsförmåga (λ) är en specifik materialegenskap. Den representerar värmeflödet i watt (W) genom en yta på 1 m² och ett 1 m tjockt plant lager av ett material när temperaturskillnaden mellan de två ytorna i värmeflödets riktning uppgår till 1 Kelvin (K). Mättenheten för termisk ledningsförmåga (λ) är W/(m·K).

Den termiska motståndskraften (R) beskriver den termiska isoleringseffekten för ett byggnadslaget. Den uppnås genom att dividera tjockleken (d) med det designade värdet för termisk ledningsförmåga för en byggnadskomponent: R = d/λ (i enlighet med EN ISO 6946). Enheten för termisk motståndskraft (R) är (m²·K)/W. I byggnadskomponenter som består av flera lager, läggs den termiska motståndskraften för de individuella lagren ihop.

2.1.1 Termisk ledningsförmåga och termisk motstånd för isoleringsmaterial

Den termiska ledningsförmågan för fast polyuretanskum (PUR/PIR) är beroende av:
• cellgasen som används
• densitet
• temperatur
• uppträdande vid närvaro av vatten och fukt
• tidpunkt för mätningen.

Den termiska överföringen (U) är värmeflödet i watt (W) genom 1 m² av en byggnadskomponent när temperaturskillnaden mellan ytorna i värmeflödets riktning är 1K. U-värdet kan beräknas från U = 1/R för en given konstruktion och anges i allmänhet i W/(m²·K).

Den termiska ledningsförmågan och den termiska motståndskraften för isoleringsmaterial av fast polyuretanskum (PUR/PIR) bestäms i enlighet med Bilaga A och Bilaga C i EN 13165.
2.1.2.1 Inverkan av cellgasen

De exceptionella isoleringsegenskaperna för fast polyuretanskum (PUR/PIR) uppnås via användning av blåsmedel. Den termiska ledningsförmågan för blåsmedlet vid en referenstemperatur på 10 °C är betydligt lägre än för luft (λ_{pur} = 0,024 W/(m·K)). Det vanligast använda blåsmedlet är kolväxt pentan, antingen som en ren isomer eller som en blandning av isomererna normal, iso- eller cyklopentan, med en termisk ledningsförmåga på mellan 0,012 och 0,013 W/(m·K).[1] För särskilda syften, används fluorkolväten som exempelvis HFC-365 mfc eller HFC-245 fa.

Tack vare det höga slumpa cellinnehållet i fast polyuretanskum (PUR/PIR) (proportion av slutna celler > 90 %), förblir blåsmedlet i isoleringsmaterialet i det långa loppen. Gasdiffusionstäta fasader reducerar cell-gas-utbytet med den omgivande luften.

De inledande värdena för termisk ledningsförmåga bestäms inom ramverket för övervakning från tredje part i enlighet med EN 13165, en till åtta dagar efter tillverkningen av isoleringspanelerna av ett testinstitut som är godkänt av byggnadsmyndigheterna.

2.1.2.2 Inverkan av densitet

Mängden strukturelt material ökar allteftersom densiteten stiger. Detta ökar andelen värmé som leds över det strukturella materialet. Ökningen av termisk ledningsförmåga ökar dock inte i proportion till den ökade densiteten, den termiska ledningsförmågan för fast polyuretans (PUR/PIR) förändras lite i densitetsintervallet 30 till 100 kg/m³ som är relevant för byggnation.

2.1.2.3 Inverkan av temperatur

Den termiska ledningsförmågan för isoleringsmaterial minskar allteftersom temperaturen sjunker. Temperaturökningar leder å andra sidan till en minimal ökning av den termiska ledningsförmågan.

Mätningar av termisk ledningsförmåga sker under standardiserade förhållanden. Det är av denna anledning som de uppmätta värdena konverteras till en medeltemperatur på 10°C. De minimala avvikelsena i termisk ledningsförmåga för byggnadsförhållandena jämfört med referenstemperaturen på 10°C tas med i beräkningen för designvärdet för termisk ledningsförmåga.

2.1.2.4 Inverkan av vattenabsorption efter nedsänkning i vatten under 28 dagar

 Vid en referenstemperatur på 25 °C, är den termiska ledningsförmågan för vatten λ = 0,58 W/(m·K). Eftersom den termiska ledningsförmågan för det vanligaste isoleringsmaterialen varierar mellan 0,030 W/(m·K) och 0,050 W/(m·K), leder vattenabsorption på grund av nedsänkning i vatten till en ökning av den termiska ledningsförmågan. Dock har vatten- absorption endast en liten inverkan på den termiska ledningsförmågan för fast polyuretanskum (PUR/PIR). Studier som har genomförts av Forschungsinstitut für Wärmeschutz i München har påvisat att ökningen av termisk ledningsförmåga för fast polyuretanskum (PUR/PIR) som har expanderats med pentan efter 28 dagers nedsänkning i vatten är obetydligt och uppgår till runt 0,0018 W/(m·K).[2]

2.1.3 Deklarerat värde för termisk ledningsförmåga

Det deklarerade värdet för termisk ledningsförmåga (λ_{an}) härlsds från uppnåtta värden som bestäms för åldrande och regler som anges i EN 13165. Det deklarerade värdet bestäms urfrån de ursprungliga uppnåtta värdena och tar med statistisk spridning och ökningen för åldrande i beräkningen. Det rapporteras i steg på 0,001 W/(m·K).

2.1.4 Långsiktig termisk ledningsförmåga för isoleringsmaterial tillverkade av fast polyuretanskum (PUR/PIR)

Utöver den termiska ledningsförmågan för den solida materiastrukturen och värmestrålningen i skumcellerna, är den termiska ledningsförmågan för fast polyuretanskum (PUR/PIR) i huvudsak beroende av värmeverkande via cellgasen. Det relativt stora ökningen av termisk ledningsförmåga i början av studien har att göra med gasutbytet mellan CO₂ (termisk ledningsförmåga c. 0,016 W/(m·K)) och luft (termisk ledningsförmåga 0,024 W/(m·K)).

Efter cirka 3 år, när cellgassammansättningen en stabil jämvikt och den termiska ledningsförmågan förändras endast minimalt efter detta. I allmänhet uppnår tjockare isoleringsmaterial lägre långsiktiga värden för termisk ledningsförmåga.

Tidskurvan visar att de 'fasta ökningarna' i enlighet med EN 13165 för pentan har dimensionerats korrekt:

• 5,8 mW/(m·K) vid tjocklekar < 80 mm
• 4,8 mW/(m·K) vid tjocklekar > 80 mm och < 120 m
• 3,8 mW/(m·K) vid tjocklekar > 120 mm och <160 mm
• 2,8 mW/(m·K) vid tjocklekar > 160 mm och < 200 mm (prEN13165, 2008)
• 1,8 mW/(m·K) vid tjocklekar > 200 mm (prEN13165, 2010)

Användare kan vara säkra på att de deklarerade värdena för termisk ledningsförmåga (λ_{an}) inte kommer att överskridas ens över mycket långa tidperioder.[2 ja 3]

[1] 2.1.2.4 Inverkan av vattenabsorption efter nedsänkning i vatten under 28 dagar

Bild 3: Ökning av termisk ledningsförmåga för isoleringsmaterial tillverkade av fast polyuretanskum (PUR/PIR) under de första 15 åren efter tillverkningen
2.2 Densitet

Densiteten för fast polyuretanskum (PUR/PIR) som används för termisk isolering i byggnader varierar normalt mellan 30 kg/m³ och 45 kg/m³. Dock kan den uppnå 100 kg/m³ inom vissa användningsområden.

För särskilda användningsområden som är föremål för extrem mekanisk belastning, kan densiteten för fast polyuretanskum (PUR/PIR) ökas till 700 kg/m³.

Endast en liten del av det fasta polyuretanskumnets volym består av fast material. För en densitet på 30 kg/m³ som är vanlig inom byggnadsarbeten, utgör det fasta plastmaterialet endast 3 % av volymen. Detta material bildar ett nät av cellstöttor och cellväggar som kan motstå mekanisk belastning på grund av sin fasthet och motståndskraft mot buckling.

2.3 Tryckstyrka om eller tryckbelastning vid 10 % deformering σ₁₀

Styrkeegenskaperna för fast polyuretanskum (PUR/PIR) är primärt en funktion för dess densitet. När man tittar på materialuppträdande under tryckbelastning, skiljer man mellan tryckbelastning och tryckstyrka. Tryckbelastning bestäms i allmänhet vid 10 % deformering. Tryckstyrka definieras som maximal belastning upp till brytstyrkan.

Tryckstyrkan eller tryckbelastningen vid 10 % deformering för isoleringsmaterial tillverkade av fast polyuretanskum (PUR/PIR) mäts i enlighet med EN 826 inom en tidsram på endast några få minuter. Detta är kant som korttidsläge förhållande. Dessa uppmätta värden kan användas för att jämföra olika isoleringsmaterial. För pålitliga statistiska måttvärden, är det nödvändigt att ha värden för långsiktig konstnärlig tryckbelastning (tryckkrypning).

För många användningsområden för fast polyuretanskum (PUR/PIR), är ett värde för tryckstyrka σ₀ eller tryckbelastning σ₀10 på 100 kPa tillräckligt.

Inom vissa användningsområden, som exempelvis takläggning, golvläggning, innertak eller yttre isolering, kan högre tryckbelastningar förekomma.

2.4 Konstnärlig tryckbelastning (tryckkrypning)

Byggnader är i allmänhet föremål för statisk belastning över långa perioder. Belastningen måste fördelas såtatt utan att hämma byggnaden i sin helhet. Med dess utmärkta tryckbelastningsvärden kombinerat med elasticitet, har fast polyuretanskum (PUR/PIR) visat sig vara ett exceptionellt termiskt isoleringsmaterial inom sådana tryckbelastade användningsområden över flera årtionden.

Inom vissa användningsområden - huvudsakligen inom golvläggning - utsätts fast polyuretanskum (PUR/PIR) för konstnärlig statisk belastning, exempelvis från maskiner eller förvarat material. Här utgör deformation under konstnärlig belastning den fundamentala faktorn i den statiska beräkningen. För att säkerställa såkrar dimensionering för sådana strukturer, får den maximala deformationen av isoleringsmaterialet inte betydligt överstiga 2 % över en belastningsperiod på 20 respektive 50 år. Långsiktiga tester av fast polyuretanskum (PUR/PIR) har bekräftat pålitligt uppfyllande av dessa värden.

Långsiktigt uppträdande för isoleringsmaterial tillverkade av fast polyuretanskum (PUR/PIR) under konstnärlig tryckbelastning (tryckkrypning) bestäms i enlighet med EN 1606.
2.6.1 Vattenabsorption efter nedsänkning i vatten under 28 dagar

 Vid laboratorieterster där isoleringspaneler tillverkade av fast polyuretan (PUR/PIR) är permanent omgivna av vatten, kan vattenabsorption ske via diffusion och kondensation. I det 28 dagar långa nedsänkningstestet i enlighet med EN 12087, är absorptionsnivån som uppmäts i en 60 mm tjock PUR/PIR-isoleringspanel (med yta av mineralull, densitet 35 kg/m³) typiskt runt 1,3 procent efter volym.

När isoleringspaneler tillverkade av fast polyuretanskum (PUR/PIR) används som ytterisolerande, kan de vara konstant utsatta för fukt.

2.6.2 Fuktbeteende under effekt av diffusion och kondensation och i omväxlande frost-lö-förhållanden

När fast polyuretanskum (PUR/PIR) används som ytterisolering, är isoleringspanelerna i ständig direkta kontakt med underlaget och därför föreligger ökad exponering för effekterna av fukt och frost.

Den maximala fuktabsorptionen för isoleringspaneler tillverkade av fast polyuretanskum (PUR/PIR) på grund av diffusion och kondensation uppmättes i enlighet med EN 12088 uppgår till cirka 6 volymprocent.

Testar som genomförts vid Forschungsinstitut für Wärmeschutz i München angående fuktegenskaperna för fast polyuretanskum (PUR/PIR) som utsätts för omväxlande frost-lö-förhållanden gav resultat mellan 2 och 7 volymprocent för isoleringspaneler utan ytstäckning.

2.6.3 Diffusionsmotståndsfaktor för vattenånga μ

Diffusionsmotståndsfaktorn för vattenånga (μ) utgör en primär parameter vid bestämmandet av det fuktrelaterade beteendet för byggnadskomponenter. μ-värdet specificerar hur mycket större diffusionsmotståndet för vattenånga för ett byggnadskomponentslager är än samma tjocklekr för luft (μ = 1).

Diffusionsmotståndsfaktorn för vattenånga (μ) är en primär parameter vid bestämmandet av det fuktrelaterade beteendet för byggnadskomponenter. μ-värdet specificerar hur mycket större diffusionsmotståndet för vattenånga för ett byggnadskomponentslager är än samma tjocklekr för luft (μ = 1).

Tillsammans med en del andra komponenter anses den som en komponent i byggnadskomponentens ventilation och andningskomponenter.

För fuktrelaterade beräkningar för byggnadskomponenter inom specifika användningsområden, bör det mindre fördelaktiga värdet antas.
2.6.4 Diffusionsekvivalent tjocklek för luftlagret Sd
Den diffusionsekvivalenta tjockleken för luftlagret (sd) är produkten av lagertjockleken i meter och diffusionsmotståndsfaktorn (μ):
\[S_d = \mu \cdot s \]

2.7 Termisk expansion

Alla material expanderar när de utsätts för värme. Koefficienten för termisk expansion uttrycker den materialspecifika termiska expansionen vid en temperaturökning på 1 Kelvin. I skumplast med slutna celler, påverkar också gastrycket i cellstrukturen expansionen.

Koefficienten för termisk expansion för fast polyuretanskum (PUR/PIR) är bland annat beroende av:
- densitet
- ytäckning
- fästmetod, om sådan har använts, för isoleringsmaterialet på ett byggnadskomponentlager
- det valda temperaturintervall

Mätningar på isoleringspaneler med flexibla ytor, tillverkade av fast polyuretanskum (PUR/PIR) och med en densitet mellan 30 och 35 kg/m³ gav koefficienter för termisk expansion på mellan 3 och 7 x 10⁻⁵·K⁻¹.

2.8 Specifik värmeförmåga och värmelagringssförmåga

2.8.1 Specifik värmeförmåga cp

Den specifika värmeförmågan \(c_p \) anger hur mycket värmeenergi som krävs för att höja temperaturen för 1 kg materialmassa med 1 K. Specifick värmeförmåga \(c_p \) mäts i J/(kg·K).

Mera värmeenergi krävs för att höja temperaturen med 1 K för ett material med lägre värmeförmåga. Omvänt krävs mindre energi för att producera en temperaturökning på 1 K för material med lägre värmeförmåga.

I enlighet med EN 12524, ska dessa beräknade värden användas i särskilda beräkningar av värmeöverföring i byggnadskomponenter med ostadiga randvillkor.

<table>
<thead>
<tr>
<th>Material</th>
<th>Specifik värmeförmåga (c_p) = J/(kg·K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast polyuretanskum (PUR/PIR)</td>
<td>1 400 – 1 500</td>
</tr>
<tr>
<td>Isoleringsspaneller av träfiber</td>
<td>1 400</td>
</tr>
<tr>
<td>Mineralull</td>
<td>1 030</td>
</tr>
<tr>
<td>Trä och träbaserade material</td>
<td>1 600</td>
</tr>
<tr>
<td>Gipspaneler</td>
<td>1 000</td>
</tr>
<tr>
<td>Aluminium</td>
<td>880</td>
</tr>
<tr>
<td>Andra metaller</td>
<td>380 – 460</td>
</tr>
<tr>
<td>Luft ((p=1,25 kg/m³))</td>
<td>1 000</td>
</tr>
<tr>
<td>Vatten</td>
<td>4 190</td>
</tr>
</tbody>
</table>

Tabell 1: Beräknade värden för specifik värmeförmåga \(c_p \) för olika material

2.8.2 Värmelagringssförmåga C

Värmelagringssförmågan för byggnadskomponenter påverkas av den specifika värmeförmågan hos de individuella byggnadsmaterial som de innehåller.

Värmelagringssförmågan \(C \) i J/(m²·K) specificerar hur mycket värme ett homogent byggnadsmaterial med en yta på 1 m² och tjocklek (d) kan lagra när temperaturen stiger med 1 K.

\[\text{VÄRMELAGRINGSFÖRMÅGA } C \text{ i J/(m²·K)} = \text{specifik värmeförmåga } c_p \times \text{densitet } \rho \times \text{lagrets tjocklek } d \]

Tabell 2 visar att värmelagringssförmågan för träfiberplattor är många gånger större än för isoleringsplattor av fast polyuretanskum (PUR/PIR). Vid inomhusförhållande på sommaren är dessa skillnader försumbara.

Med hjälp av datorstödda termiska simulationer, undersökte Forschungsinstitut für Wärmeschutz i München vilken påverkan isoleringstypen har i olika lutande takkonstruktioner på inomhusklimatet. [5]

Utan solskydd, nådde innetemperaturen 31° C på eftermiddagen. De uppmätta temperaturerna i rummet visar att värmelagringssförmågan för olika isoleringsmaterial saknar relevans. Innetemperaturerna skilde sig som mest 0,6 K.
När fönstret i taket är skyddat från solen, är innetemperaturen på eftermiddagen betydligt lägre än utomhustemperaturen; rumstemperaturen förblir under 25° C hela tiden. Även här saknar isoleringsmaterial betydande inverkan på inomhustemperaturen.

Resultatet av datorsimulationen visar att:
• solstrålning är den huvudsakliga inverkande faktorn på inomhusklimatet på sommaren och därför skapar effektivt solskydd vid fönstren behagliga inomhusförhållanden
• värmelagringsförmågan för de olika isoleringsmaterialen har väldigt liten inverkan på inomhustemperaturen på sommaren.

Bra termisk isolering förbättrar inomhusklimatet även på sommaren. Tjocklek för tjocklek, reducerar isoleringsmaterial med lägre termisk ledningsförmåga värmeflödet genom externa byggnadskomponenter.

2.9 Temperaturstabilitet

Isoleringsmaterial tillverkade av fast polyuretanskum (PUR/PIR) erbjuder en hög nivå av termisk motsäktskraft och goda dimensionella stabilitetsegenskaper. Beroende på densitet och täckning, kan

<table>
<thead>
<tr>
<th>Material</th>
<th>Tjocklek</th>
<th>Termisk ledningsförmåga</th>
<th>Densitet</th>
<th>Specifik värmeförmåga</th>
<th>Värmelagraingsförmåga</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolerings av fast polyuretanskum (PUR/PIR)</td>
<td>105</td>
<td>0,025</td>
<td>30</td>
<td>1,5</td>
<td>4,73</td>
</tr>
<tr>
<td>Timmerskal</td>
<td>28</td>
<td>0,13</td>
<td>600</td>
<td>1,6</td>
<td>26,88</td>
</tr>
<tr>
<td>Bitumenskal</td>
<td>2</td>
<td>0,17</td>
<td>1 200</td>
<td>1,0</td>
<td>2,40</td>
</tr>
<tr>
<td>Gipsplattor</td>
<td>12,5</td>
<td>0,21</td>
<td>900</td>
<td>1,0</td>
<td>11,25</td>
</tr>
</tbody>
</table>

Fall 1: Lutande tak med isolering av fast polyuretanskum (PUR/PIR)

Fall 2: Lutande tak med träfiberisolering

Träfiberpanel	180	0,040	120	1,4	30,24
Timmerskal	28	0,13	600	1,6	26,88
Bitumenskal	2	0,17	1 200	1,0	2,40
Gipsplattor	12,5	0,21	900	1,0	11,25

Tabell 2: Exempel på värmelagraingsförmåga för olika byggnadskomponentlager i ett tak med lutning.

Bild 10: Extern temperatur och inomhustemperatur den varma dagen en varm sommarvecka - med solskydd.

Bild 11: Hållbarhet för isoleringspaneler av fast polyuretanskum (PUR/PIR) som utsätts för värme

Dessutom kan ett antal specialprodukter av polyuretan installeras som isolering under gjutna asfaltgolv och motstå temperaturer på upp till +200°C utan ytterligare värmeskydd, eller kan användas för användningsområden för kall temperatur ner till -180°C.

2.10 Kemisk och biologisk stabilitet

UV-strålning orsakar missfärgningar hos isoleringsplattor av fast polyuretanskum (PUR/PUR) utan täckning eller vid skärboxstorm och med tiden leder detta till en slip effekt på ytan av lägre grad. Dock utgör inte detta en teknisk nackdel. Den slitade ytan kan avlägsnas i följande steg. Motstånd till +200°C utan ytterligare värmeskydd, eller kan användas för användningsområden som är baserade på PUR/PIR kan nå B, s2, d0.

Fakta

- motstånd mot brand och brandmodellering
- de skadas motståndskraft

UV-strålning orsakar missfärgningar hos isoleringsplattor av fast polyuretanskum (PUR/PUR) utan täckning eller vid skärboxstorm och med tiden leder detta till en slip effekt på ytan av lägre grad. Dock utgör inte detta en teknisk nackdel. Den slitade ytan kan avlägsnas i följande steg. Motståndskraften för fast polyuretanskum (PUR/PUR) utan ytäckning mot byggnadsmaterial och kemiska ämnen bestämnes vid en testtemperatur på 20°C.

2.11 Brandegenskaper för fast polyuretanskum (PUR/PUR)

2.11.1 Reaktioner vid brand för isoleringsprodukter i enlighet med europeisk standard

Den europeiska teststandarden beskriver testutrustning och testförloppet. Dessutom kan ett antal specialprodukter av polyuretan installeras som isolering under gjutna asfaltgolv och motstå temperaturer på upp till +200°C utan ytterligare värmeskydd, eller kan användas för användningsområden för kall temperatur ner till -180°C.

UV-strålning orsakar missfärgningar hos isoleringsplattor av fast polyuretanskum (PUR/PUR) utan täckning eller vid skärboxstorm och med tiden leder detta till en slip effekt på ytan av lägre grad. Dock utgör inte detta en teknisk nackdel. Den slitade ytan kan avlägsnas i följande steg. Motståndskraften för fast polyuretanskum (PUR/PUR) utan ytäckning mot byggnadsmaterial och kemiska ämnen bestämnes vid en testtemperatur på 20°C.

2.11.2 Motståndskraft mot brand för byggnadselement som innehåller isolering av fast polyuretanskum (PUR/PUR)

Byggnadselement klassificeras i enlighet med EN 13501-1 "Brandklassificering för byggnadsmaterial och byggnadselement - Del 1: Klassificering som av användare testdata från reaktion på brandtestverk". För närvarande har 4 olika brandklassificeringar bestämts: för byggnadsmaterial som exkluderar golvbeläggningar, för golvbeläggningar, för rörsöring och för kilar.

UV-strålning orsakar missfärgningar hos isoleringsplattor av fast polyuretanskum (PUR/PUR) utan täckning eller vid skärboxstorm och med tiden leder detta till en slip effekt på ytan av lägre grad.Dock utgör inte detta en teknisk nackdel. Den slitade ytan kan avlägsnas i följande steg. Motståndskraften för fast polyuretanskum (PUR/PUR) utan ytäckning mot byggnadsmaterial och kemiska ämnen bestämnes vid en testtemperatur på 20°C.

Byggnadselement klassificeras i enlighet med EN 13501-1 "Brandklassificering för byggnadsmaterial och byggnadselement - Del 1: Klassificering som av användare testdata från reaktion på brandtestverk". För närvarande har 4 olika brandklassificeringar bestämts: för byggnadsmaterial som exkluderar golvbeläggningar, för golvbeläggningar, för rörsöring och för kilar.

2.11.3 Klassificering för reaktion vid brand för produkter baserade på fast polyuretanskum (PUR/PUR)

I enlighet med formel och typ av ytbeläggning, har de vanligaste PUR/PUR-plattorna en klassificering från C, s2, d0 till F. För rösöring av PUR/PUR, berorande på formel och typ av ytbeläggning, är en klassificering från B, s1, d0 till F möjlig. Sandwichpaneler med metallyta som är baserade på PUR/PUR kan nå B, s2, d0.
Hållbar konstruktion handlar inte bara om att utvärdera de miljömässiga aspekterna för individuella byggnadsmaterial. Hållbarhetskonceptet kräver en mera komplex infallsvinkel som omfattar hela livetiden för en byggnad och materialen som används. Följande aspekter måste beaktas:

- miljömässiga mål, som exempelvis resurskydd, energibesparingar, minskade koldioxidutsläpp och återvinning
- ekonomiska mål, som minskade byggnads- och driftskostnader genom att använda byggnadsprodukter med motsvarande prestandaprofil
- sociokulturella aspekter, hälsa och bekvämlighet, dvs. byggnader där människor lever och arbetar måste uppfylla användarnas behov och garantera en hög nivå av välbefinnande

I denna rapport fokuserade vi på hur PUR/PIR bidrar till de miljömässiga aspekterna för hållbar utveckling.

3.1 Minskad energiförbrukning och minskade utsläpp

Byggnader står för mer än 40 % av den totala energiförbrukningen inom EU. Våra energikällor är emellertid inte utomländer. Ökningar av energieffektiviteten, dvs. energibesparingar och optimal energi- användning är förhandskraven för att stänga gapet mellan begränsade resurser och ökad efterfrågan.

3.2 Hygienen och livsmedelsskonservering

Med en fördubblad befolkning på jorden inom 50 år och förväntade 8 miljarder invånare år 2030, har jorden ett ständigt ökande antal invånare som behöver boende och föda.

Isoleringseffektiviteten för fast polyuretanskum (PUR/PIR) är en nyckelegenskap för lägttemperaturenskonservering av livsmedel under beredning, förvaring och distribution till konsumenten och kan spara så mycket som femto procent av värdefulla livsmedel som annars skulle ruttna innan de kan konsumeras.

Hygien är en viktig faktor vid hantering av livsmedel. Byggnader med sandwichpaneler med kärna av fast polyuretanskum (PUR/PIR)
14

Termiska isoleringsprodukter tillverkade av fast polyuretanskum (PUR/PIR) är extremt stabila och hållbara; de hälter i allmänhet under byggnadens hela livstid. Efter nedmontering/rövning av byggnaden, kan isoleringsmaterial av fast polyuretanskum (PUR/PIR) återanvändas.

Rent och oskadade isoleringsplattor av fast polyuretanskum (PUR/PIR) kan användas igen för att isolera övervåningar/vindsutrymmen.

Renta och ökningen av avfallsmaterialet är känd och det inte finns några oenigheter, kan en råmaterialkomponent återhållas via glykolys.

Avfall från fast polyuretanskum (PUR/PIR) med oenigheter, eller med rester av andra byggmässningsmaterial, kan brännas tillsammans med annat hushållsavfall i förbränningsanläggningar med värmeåtervinningssystem utan några ytterligare negativa effekter på miljön. Under processen omvandlas energin i isoleringsmaterialet primärt till energi.
4 Tillverkning av termiska isoleringsmaterial av fast polyuretanskum (PUR/PIR)

Fast polyuretanskum (PUR/PIR) tillverkas genom en kemisk reaktion mellan två baskkomponenter i vätskeform och ett blåsmedel med låg kokpunkt som exempelvis pentan eller CO₂.

Ytan för reaktionsblandningen behåller sin fästkapacitet under en bestämd period efter skumningsprocessen, vilket gör det möjligt att fästa beklädnader på ett permanent sätt. Vid industriell tillverkning, fininställs skumningsprocessen via användning av katalysatorer, som tillhandahåller effektiv tidshantering för produktionscykeln.

Isoleringsmaterial av fast polyuretanskum (PUR/PIR) fabriksstillverkas som:
- isoleringsplattor med flexibel beklädnad
- blockskum, som formskärs till isoleringsplattor eller sektioner
- sandwichpaneler med fast beklädnad.

4.1 Tillverkning av isoleringsplattor av fast polyuretanskum (PUR/PIR) med flexibel beklädnad

Isoleringsplattor av fast polyuretanskum (PUR/PIR) med flexibel beklädnad tillverkas i en kontinuerlig process med en kontinuerlig lamineringsmaskin. Under denna tillverkningsprocess, hålls reaktionsblandningen genom ett blandrhuvud till den lägre beklädnaden på ett permanent sätt. Vid industriell tillverkning, fininställs skumningsprocessen via användning av katalysatorer, som tillhandahåller effektiv tidshantering för produktionscykeln. Isoleringsmaterial av fast polyuretanskum (PUR/PIR) fabriksstillverkas som:
- isoleringsplattor med flexibel beklädnad
- blockskum, som formskärs till isoleringsplattor eller sektioner
- sandwichpaneler med fast beklädnad.

4 Tillverkning av termiska isoleringsmaterial av fast polyuretanskum (PUR/PIR)
Den flexibla beklädnaden tillverkas i allmänhet av:
- mineralull
- glasull
- aluminiumfolie
- kompositfilm.

4.2 Tillverkning av block av fast polyuretanskum (PUR/PIR)

Block av fast polyuretanskum (PUR/PIR) kan tillverkas antingen via kontinuerliga eller icke-kontinuerliga processer.

4.2.1 Kontinuerlig tillverkning av blockskum

Vid kontinuerlig tillverkning av blockskum, appliceras reaktionsblandningen på en U-formad pappersremsa som stöds på sidorna och transporterad vid en transportband. Vid slutet av transportbandet, kan det expanderade blocket skäras till önskad längd.

4.2.2 Icke-kontinuerlig tillverkning av blockskum

Baskomponenterna blandas i en blandare innan de hälls in i en lådform. Reaktionsblandningen expanderar och bildar ett fast skumblock.

Efter den avslutande härning, skärs blocken som har tillverkats i de kontinuerliga och icke-kontinuerliga processerna till plattor (exempelvis isoleringsplattor för antingen platta eller lutande tak) eller sektioner (för exempelvis vindar eller rörisolering).

Lämpliga beklädnader kan limmas på de skurna plattorna för att skapa laminat av olika slag för olika användningsområden.
4.3 Tillverkning av sandwichpaneler av fast polyuretanskum (PUR/PIR) med fast beklädnad

Sandwichpaneler av polyuretan (PUR/PIR) kan tillverkas i kontinuerliga eller icke-kontinuerliga processer.

4.3.1 Kontinuerlig tillverkning av metallbelagda sandwichpaneler

Sandwichpaneler av polyuretan (PUR/PIR) tillverkas som självsödande monteringsfåra konstruktionselement med beklädnad av stål, aluminium eller andra fasta material. De levereras med bredder på 800 mm till 1 250 mm och med en längd på upp till 24 m. Dessa byggnadskomponenter har relativt låg totalvikt, men uppfyller trots detta bra styrka och stabilitet. De är enkla att transportera och kan installeras med minimalt arbete.

4.3.2 Icke-kontinuerlig tillverkning av sandwichpaneler

Vid icke-kontinuerlig tillverkning av sandwichelement, fästs beklädnaden i en stödform på en ram och den skapade håligheten fylls med polyuretan-reactionsblandning. I passande stödformer kan flera sandwichpaneler produceras samtidigt i denna process.

4.4 Sammanfattning

Användningsområden och tillverkningsmetoder för termiska isoleringsmaterial av fast polyuretanskum (PUR/PIR) presenteras i Tabell 5.

<table>
<thead>
<tr>
<th>Användningsområde</th>
<th>Isoleringspaneler, fabrikstillverkade</th>
<th>Blockskum, fabrikstillverkat</th>
<th>På byggnadsplatsen in-situ-skum tillverkat på plats, sprayat/fördelat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byggnadsbeklädnad</td>
<td>EN 13165, EN 14509, EN 13165</td>
<td>EN 13165</td>
<td>DIN 18159-1</td>
</tr>
<tr>
<td>Byggnadstjänster</td>
<td>prEN 14308</td>
<td>prEN 14308</td>
<td>DIN 18159-1</td>
</tr>
</tbody>
</table>

Tabell 5: Användningsområden och tillverkningsmetoder för termiska isoleringsmaterial av fast polyuretanskum (PUR/PIR).
5 Europeisk harmonisering av isoleringsmaterial - märkning av termiska isoleringsprodukter av fast polyuretanskum (PUR/PIR)

Målsättningen för de europeiska reglerna inom byggnadssektorn är att skapa en gemensam enskild marknad och garantera det fria flödet av varor för att öka konkurrenskraften för den europeiska industrin. Harmoniseringen av de tekniska föreskrifterna för byggnadsprodukter och avskaftandet av handelsbarriärer är hörnstenar för den gemensamma enskilda marknaden.

5.1 Föreskrifter inom det europeiska direktivet för byggnadsprodukter

Det europeiska direktivet för byggnadsprodukter innehåller officiella föreskrifter för harmonisering inom byggnadssektorn. Direktivet fastställer villkor under vilka byggnadsprodukter kan introduceras och säljas på marknaden. Produkterna måste uppfylla vissa egenskaper för att säkerställa att byggnaden där de ska installeras uppfyller vissa minimikrav. Produkterna måste uppfylla följande väsentliga villkor:

• mekanisk motståndskraft och stabilitet
• säkerhet i händelse av brand
• hygien, hälsa och miljön
• säkerhet vid användning
• skydd mot buller
• energieffektivitet och värmebevarande

Byggnadsprodukterna och deras egenskaper beskrivs i harmoniserade europeiska standarder (hEN) och europeiska tekniska godkännande (ETA). Den europeiska kommittén för standardisering (CEN) utarbetar harmoniserade standarder åt den europeiska kommissionen på basis av direktivet för konstruktionsmaterial (CPD). Överensstämmelse för en byggnadsprodukt med en harmoniserad europeisk standard eller ett europeiskt tekniskt godkännande bekräftar av CE-märkningen.

5.2 CE-märkning

CE-märkningen är ett slags ‘tekniskt pass’. Isoleringsprodukter som bär CE-märkningen kan säljas inom den gemensamma europeiska marknaden. CE-märkningen är det enda beviset på överensstämmelse med gällande lagstiftning. CE-märkningen visar följande information:

• CE-märkningssymbolet (består av bokstäverna CE)
• information om tillverkaren (adress) och tillverkningen (tillverkningsår)
• kodad information angående vissa produktegenskaper
• försäkran om överensstämmelse från tillverkaren

CE-märkningen är ett slags ‘techniskt pass’. Isoleringsprodukter som bär CE-märkningen kan säljas inom den gemensamma europeiska marknaden. CE-märkningen är det enda beviset på överensstämmelse med gällande lagstiftning. CE-märkningen visar följande information:

• CE-märkningssymbolet (består av bokstäverna CE)
• information om tillverkaren (adress) och tillverkningen (tillverkningsår)
• kodad information angående vissa produktegenskaper
• försäkran om överensstämmelse från tillverkaren
6 Referenzen

